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Introduction

When determining a TV schedule for a particular channel, it might be intuitive
that a certain combination of shows (movies) would perform better than some
other combination. Furthermore, there should be constraints placed on which
combinations are viable. This could include, for example, the idea that shows
which have an age restriction cannot be played at inappropriate times. This then
becomes an optimisation problem, where we maximise some measure of score
while conforming to the constraints imposed. This document will highlight
a Binary Integer Linear Programming approach to solving this optimisation
problem. Elaboration will be given to the formulation of the cost function and
constraints. Thereafter, the tools used in the solution of the problem, and results
will be discussed.

1 Data

e Movie Data (duration, acceptable playing hours, min/max number of
runs)

e Time Data (1-hour timeslots and their scores)

e Channel-Specific Rules (peak start/end, peak/offpeak gaps)

2 Constraints

e One movie at a time (physical constraint)

e Min/max number of runs

e Min movie repeat time (48 hours)

e Acceptable playing hours (e.g., age constraints)
e License start/stop

e 1 week ban

e Length of (advert) breaks



3 Model Formulation

We model the optimisation problem as a Binary Integer Linear programming
problem. We first describe a Linear Programming problem.

A Linear Programming problem seeks to optimise a linear cost function
with respect to certain linear equality or inequality constraints. An Integer
Linear Programming problem requires that the solution variables are restricted
to integers. When the solution vector is further restricted to either 0, or 1, we
have a Binary Integer Linear Programming problem:

Maximise c¢'x

subject to Ax <b
with x € {0,1}

There exist numerous efficient algortihms that can be used to solve such prob-
lems. The hope is that, if the scheduling problem can be reduced to a BILP,
then we can solve it.

4 Assumption and Derivation

We first turn our attention to a simpler problem by making a significant as-
sumption. We assume that all movies are 2-hours long. Perhaps this is not
unreasonable when we consider that the average length of a movie is 1.77 hours.

We proceed with our two-hour assumption and divide each day into 12 2-hour
long blocks, each with an associated score. The data set for channel 1 has 31
days (making 372 slots to fill) and 76 movies. Now consider a 76 x 372 (binary)
state matrix X whose (4,7) entry is 1 if movie i is played at time j. This state
matrix is then collapsed to a 28272 x 1 state vector x. Similarly we make a score
matrix C whose (¢, 7) entry is the product of the score associated with movie ¢
and time-slot j (given by the data) and collapse this to a vector c.

Our aim is to find the binary vector x which maximises ¢ 'x. Importantly, the
constraints need to be formulated such that they can be represented as a linear
system.



5 Constraints

Most of our constraints are ‘counting’ constraints, which can be easily imple-
mented as linear (in)equalities:

One movie at a time:
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(For min number of repeats change < to >.)

No repeats within 48 hours: Consider for now just the constraint that we
can’t play movie #1 twice in a row. The idea for 48 hours is similar.

(For min number of repeats change < to >.)

24 hours in a day:

(92 75 120 115[92 75 120 115|0 ... )x<24

Earliest Allowed: Since each partition of the coefficient vector corresponds
to a time slot, excluding movie m; from time slot ¢; is equivalent to removing
the column of that movie in the coeflicient matrix. The corresponding entry in
the state vector x must also be removed. Suppose we must have that movie ms
cannot be played in timeslot £1, then in the one movie at a time constraint, the

matrix becomes:
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6 Tools

The algorithms available for BILPs come in different flavours. An initial im-
plementation was done in MATLAB, but due large computational times we
switched to the propriety Gurobi software (www.gurobi.com - free for academic
use!).

More specifically, available software includes:

e intlinprog in MATLAB.

e scipy.optimize.linprog in Python.

e Gurobi (MATLAB and Python interfaces)
LINGO/LINDO

MPL/CPLEX

7 Results
7.1 2-Hour assumption
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Figure 1: Visualisation of Solution

Here we see that the movies are divided into 2 hour slots. At present, while
there are gaps between movies, it is not clear. One would have to do a secondary



run to determine where empty slots are present and possibly fill those without
violating the constraints.

7.2 2-Hour Assumption removed

To remove the 2-hour assumption we could split the timeslots up into smaller
windows (e.g. 15min windows) and add some form of linear continuity con-
straint. While the idea is attractive, at the time of implementation, a solution
to adding the linear continuity constraint could not be found. Additionally, one
might attempt to allow variable slot-sizes, but this leads to a non-linear cost
function.

To solve the problem as best we could, we attempted the following:
e Treat two hour assumption a model for the real problem

e Add a < 24hr constraint on the duration for each day (linear!)

Solve model (discrete time) problem

Convert to continuous time

Apply some post-processing / further optimisation
e Compute score using provided R code

The 24hr constraint ensures that shows will not run into the next day. There
may be gaps between the shows, and the post-processing step could address
this. Its clear from the Figure 2 that there are gaps at the beginning and end
of each day, which will need to be filled. The schedule was then tested with
schedTester.R.

Project ‘ Existing ‘ BILP

1 15.6 17.6
2 3.9 5.5
4 3.9 4.9
6 3.7 4.8

Table 1: Table of Results

Although the BILP performed better there were some constraints violated. The
constraints violated include license start/end dates (which was not catered for)
and in some cases earliest allowed too. The earliest allowed reported a violation
when an unsavory film was played at the early hours of the morning. One could
really argue whether this is really a violation.
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Figure 2: Visualisation of Solution

8 Future Work

Since the 2-hour assumption is a pretty big one to make, it might be a good idea
to improve on this. Dr Hale proposed a solution in which the 2 hour constraint
could be removed more effectively. He mentioned that the idea of splitting the
time-slots into smaller intervals of say 15minutes would be a good approach.
However, what was missed before was that in order to impose a continuity
constraint , we would need to split the movies into smaller intervals as well. In
this way we will be able to ensure that a movie’s sub-parts would follow on after
one another. With this approach, the gaps between shows constraint is taken
care of more effectively. The previously mentioned constraints would have to
change somewhat to incorporate this approach.

It might also be a great addition to create the system such that results can be
tweaked. It might be that the system spits out a solution which is considered
optimal according to the constraints, but not the most desired. Adding some
functionality to allow subtle human evaluation might improve the schedule’s
effectiveness. Ultimately, a second processing process, or optimisation process
would need to be run in order to achieve the most desired outcome. This is,
of course, due to the fact that not all constraints can effectively be included.
The second-optimisation run could ensure that there are valid gaps between
shows. The constraints themselves could be researched and possibly improved
on. Take for example the 48-hour constraint: We could play the highest rated



movie repeatedly with a 48-hour gap in between, but it might not be desirable.
The second optimisation step could then attempt to improve the wviewership
rating of the schedule, by tweaking the schedule such that certain situations are
avoided. Another improvement could include taking a more global viewpoint:
instead of viewing the channels as independant of one another, consider the case
where channels could be competing with one another. As an example, a live
sports match on a sports channel could compete with a high-rated movie in the
same time-slot. While this increases the size of the problem tremendously, it
might be interesting to find out if this bears interesting results.



