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Abstract

Blood is required everyday in hospitals. This is a scarce resource and its management
is complicated by the number of blood groups. A basic model is designed to manage
a blood bank. The corresponding set of governing equations is derived and solution
methods are investigated. Decision making is then expressed mathematically as a
function of the blood bank stocks.

1 Introduction

Blood is required everyday in hospitals for a lot of different uses. Blood products are
necessary during transfusions and may be classified as follows:

• Whole blood

• Red blood cells

• Blood plasma
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• Platelets

Each of these products may be stored in adequate facilities for varying amounts of time,
which extends from a few days to a few months/years [1, 2]. Blood banks, the departments
of hospital where blood is managed, encounter numerous difficulties due to the complexity
of the blood economy.

1. The demand for blood can vary considerably on a daily basis. In an emergency
situation, vast amounts of blood may be requested within a very short amount of
time. This comes on top of what would be the standard daily request.

2. The supply of blood may be erratic. Blood collection is uneven and depends on the
generosity of donors.

3. Blood is a complex product. There are four main types of blood: O, A, B and AB.
For convenience, blood type AB will be denoted C in the following. Blood types
in the population vary from country to country. In general, O and A blood groups
are dominant while B is slightly less important and C is much smaller [3]. In South
Africa, blood type proportions are O, 46%, A, 37%, B, 14% and C, 4% [4].

Table 1 shows the compatibility between the different red blood cell types. As
is well known, O is the universal donor while AB is the universal receiver. The
compatibilities are symmetrical for plasma types, see Table 2. For plasmas, O is the
universal receiver while C is the universal donor.

Receiver/Donor O A B C

O V X X X

A V V X X

B V X V X

C V V V V

Table 1: Group compatibility for red blood cells

Receiver/Donor O A B C

O V V V V

A X V X V

B X X V V

C X X X V

Table 2: Group compatibility for plasma
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4. Matters are further complicated by the Rhesus factor, another blood type parameter.
It multiplies the number of blood group by two. In South Africa, 86% people have
a positive Rhesus and 14% a negative Rhesus. The blood type repartition becomes
O+, 39%, O−, 7%, A+, 32%, A−, 5%, B+, 12%, B−, 2%, C+, 3% and C−, 1%
[4]. This modifies the compatibility between blood groups as shown in Table 3. As
can be seen, O− is the universal donor while C+ is the universal receiver.

Receiver/Donor O- O+ A- A+ B- B+ C- C+

O- V X X X X X X X

O+ V V X X X X X X

A- V V V V X X X X

A+ V V V V X X X X

B- V V X X V V X X

B+ V V X X V V X X

C- V X V X V X V X

C+ V V V V V V V V

Table 3: Group compatibility for red blood cells with Rhesus

5. When emergencies happen, patients are given O− blood type as this may be received
by anyone.

In an ideal world, each person should be allocated his/her own blood type. Blood demand
may however not meet the amount of blood donated. An imbalance can rapidly appear
and blood of certain types may reach dangerously low levels. To compensate for this,
when possible, alternative blood types may be used. Since blood products also only have
a limited stocking time, to avoid wasting vital resources, a careful management is necessary
as well. This problem of managing a blood bank was submitted to the Study Group. The
group worked in 3 different directions. First mass balances were determined and analysed
for each type of blood. Depending on the value of blood stocks in the morning, the security
of blood supplies for the rest of the day may be evaluated. These mass balances will be
detailed in Section 2. A time dependent model will then be presented which accounts for
the variation of stocks over a long period of time. This will be presented in Section 3.
Finally, a decision making process is defined in Section 4.

As already observed, the problem of blood management is complex and some assump-
tions were made to make the problem simpler.

1. In the following, only red blood cells will be considered. The model can easily include
other blood products but reducing the study to a single aspect of the problem will
considerably simplify the model.
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2. Blood types were reduced to four groups: the Rhesus factor was not considered. Here
again, this does not affect the model but will considerably simplify the equations and
highlight basic properties of the solution. Once again, the model developed below
can easily be generalised.

3. Blood supply and demand were assumed to be proportional to the representation
of blood groups in the population. In this case, only the global blood request for a
given day is required to carry out simulations.

4. Emergencies: emergency allocation of blood will not be considered to start with.
If an emergency does arise, no optimisation may be performed, hospital personnel
have no choice and patients will straight away receive O− blood.

5. The validity date of the blood products will not be considered.

2 Mass balance

In this section, the amount of blood required by a hospital is denoted by ∆. An approxi-
mate value of this parameter should (realistically) be available to the management of the
blood bank. As already observed, the amount of blood needed for each blood type is
assumed to be proportional to the representation of blood types in the population nO, nA,
nB and nC , and these values may be written:

∆O = nO∆ ,

∆A = nA∆ ,

∆B = nB∆ ,

∆C = nC∆ .

Using the red blood cell compatibility rules described in Table 1, people of blood type O

may only receive blood of type O while people with other blood types may receive blood
from other groups. In mathematical terms, the compatibility table may be expressed as
follows:

∆O = DOO , (1)

∆A = DOA +DAA , (2)

∆B = DOB +DBB , (3)

∆C = DOC +DAC +DBC +DCC , (4)
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whereDXY represents the amount of blood of type X given to people of type Y . Equations
(1-4) highlight where optimisation may take place: apart from type O, all blood groups
may be substituted with at least another type of blood. Optimisation then consists in
choosing the best replacement method. To start with, all blood quantities DXY should be
expressed as functions of VO, VA, VB and VC , the amount of blood of each type available
in the blood bank. The simplest model is a linear relationship:

DXY ∝ VX .

If there is a lot of type X blood in the bank, VX is large and this blood type may be used
to supply the request in blood of type Y . Conversely, if VX is small, DXY will be small
and very little blood of type X will be used to substitute blood of type Y . Using this
model, equations (1–4) may be rewritten:

∆O = α1VO , (5)

∆A = α2VO + β2VA , (6)

∆B = α3VO + γ3VB , (7)

∆C = α4VO + β4VA + γ4VB + δ4VC , (8)

where αi, βi, γi and δi are positive constants yet to be determined. The value of parameter
α1 is imposed by equation (5):

α1 =
∆O

VO
.

If α1 > 1, the quantity of blood needed for that given day is larger than the quantity of
blood of type O available in the bank. In this situation, blood of type O must be imported
from outside the system, otherwise there will be a shortage at some stage in the day. If
no substitution is allowed, the self replacement rates for β2, γ3 and δ4 may be expressed
as

βs
2 =

∆A

VA
, γs3 =

∆B

VB
, δs4 =

∆C

VC
, (9)

where the superscript denotes the self replacement. Here again, if the parameters have a
value larger than 1, this indicates potential shortages of blood types. If all four parameters
α1, β2, γ3 and δ4 are larger than 1, the amount of blood requested for the day is larger
than the amount of blood available in the bank and additional blood should be injected
in the system. In ideal situations these parameters should be as small as possible: this
would mean that the blood bank is well stocked in all types of bloods.

The quantities ∆i and Vi are known at the beginning of every day. The system (5-8)
gives four relationships between the nine constants αi, βi, γi and δi, which means that
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four of these parameters may be written as a function of the other five and the quantities
∆i and Vi. These remaining parameters will be used in the optimisation process.

The system of equations (5-8) highlights the difficulties created by the number of blood
types. If the Rhesus factor was considered, there would be eight equations and twenty
three constants, meaning there would be fifteen degrees of freedom in the system.

The evolution of the stocks in the blood bank will now be studied as a function of time
in Section 3 and methods to calculate the parameters will be detailed in Section 4.

3 Dynamical system

The evolution of the blood quantities in the bank will now be considered. The dynamical
mass balance for this system may be described by equations (10-13):

d VO

dt
= QO − (DOO +DOA +DOB +DOC) , (10)

d VA

dt
= QA − (DAA +DAC) , (11)

d VB

dt
= QB − (DBB +DBC) , (12)

d VC

dt
= QC −DCC . (13)

For each time unit, typically t = 1 should correspond to one day, blood enters and leaves
the system. The variations of the blood volume stocked in the blood bank will correspond
to the amount of blood donated for each blood group, denoted QO, QA, QB and QC ,
minus the amount of blood used during the day. With the notation defined in the previous
section, the quantity of blood leaving the system may be expressed as a function of DXY .
Using the model above, the governing equations become:

d VO

dt
= QO − (α1 + α2 + α3 + α4)VO ,

d VA

dt
= QA − (β2 + β4)VA ,

d VB

dt
= QB − (γ3 + γ4)VB ,

d VC

dt
= QC − δ4VC .
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These equations have the following solutions

VO(t) =

(

V 0
O −

QO

α1 + α2 + α3 + α4

)

e−(α1+α2+α3+α4)t +
QO

α1 + α2 + α3 + α4
, (14)

VA(t) =

(

V 0
A −

QA

β2 + β4

)

e−(β2+β4)t +
QA

β2 + β4
, (15)

VB(t) =

(

V 0
B −

QB

γ3 + γ4

)

e−(γ3+γ4)t +
QB

γ3 + γ4
, (16)

VC(t) =

(

V 0
C −

QC

δ4

)

e−δ4t +
QC

δ4
, (17)

where V 0
X represents the amount of blood present in the blood bank at the beginning of

the day. If all the parameters V 0
X and QX remained constant for long enough, the blood

volumes in the blood bank would reach their asymptotic values:

V l
O =

QO

α1 + α2 + α3 + α4
, V l

A =
QA

β2 + β4
, V l

B =
QB

γ3 + γ4
, V l

C =
QC

δ4
,

where the superscript l represents the long term value. The long term volumes of blood
available in the blood bank should reflect the proportions of each blood type in the pop-
ulation (nO, nA, nB, nC). These proportions describe what should be the state of stocks
in the blood bank in an ideal situation. This leads to another four equations relating the
parameters αi, βi, γi and δi:

nO =
V l
O

V l
O + V l

A + V l
B + V l

C

,

nA =
V l
A

V l
O + V l

A + V l
B + V l

C

,

nB =
V l
B

V l
O + V l

A + V l
B + V l

C

,

nC =
V l
C

V l
O + V l

A + V l
B + V l

C

.
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Assuming the donated blood quantities QX are proportional to the blood proportion in
the population, nX , the equations above may be rewritten:

nO − 1

α
+

nA

β
+

nB

γ
+

nC

δ
= 0 , (18)

nO

α
+

nA − 1

β
+

nB

γ
+

nC

δ
= 0 , (19)

nO

α
+

nA

β
+

nB − 1

γ
+

nC

δ
= 0 , (20)

nO

α
+

nA

β
+

nB

γ
+

nC − 1

δ
= 0 , (21)

where

α = α1 + α2 + α3 + α4 , β = β2 + β4 , γ = γ3 + γ4 , δ = δ4

and

nO + nA + nB + nC = 1 .

A straightforward analysis of the system (18-21) shows that there are only three indepen-
dent parameters. Solving the system leads to the three equations:

α = β = γ = δ . (22)

In the following, α, β, and γ will be expressed as a function of δ4. Equations (5-8) and
(22) may be written in a matrix form as:

















1 1 1 0 0 0 0
0 0 0 1 1 0 0
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∆C − δ4Vc

















.

There are 6 equations and 7 unknowns. One of the unknowns will have to be used as a
parameter. A priori, any of the unknown could be used but a straightforward analysis
shows that for all choices, the resulting 6 × 6 matrix is singular, so a minimum of two
unknowns should be used as parameters. The best candidates would be β2 and γ3 as they
are the only unknowns for which some information is available as shown in (9). In total,
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the equations above provide 6 independent relationships between the αi, βi, γi and δ4:

α1 =
∆O

VO
,

α2 =
∆A − β2VA

VO
,

α3 =
∆B − γ3VB

VO
,

α4 = δ4 −
∆O +∆A +∆B

VO
+

β2VA + γ3VB

VO
,

β4 = δ4 − β2 ,

γ4 = δ4 − γ3 .

All parameters should be positive which implies the following inequalities:

β2 ≤
∆A

VA
, γ3 ≤

∆B

VB
, δ4 ≤

∆O +∆A +∆B

VO
−

β2VA + γ3VB

VO
, β2 ≤ δ4 , γ3 ≤ δ4 .

The first two inequalities are directly related to the constraints on the blood bank and
should be verified automatically: they imply that the coefficients β2 and γ3 are smaller
than the self replacement rates calculated in Section 2. The last two inequalities show
that the self replacement rates for blood groups A and B should be lower than the self
replacement rate of group C.

These equations combined with (5-8) define six of the required parameters. The re-
maining parameters will be defined by optimising the decision making as will now be
discussed.

4 Decision making

At the end of the first day, equations (14-17) provide the stocks of blood available in the
bank

VO(1) =

(

V 0
O −

QO

α1 + α2 + α3 + α4

)

e−(α1+α2+α3+α4) +
QO

α1 + α2 + α3 + α4
,

VA(1) =

(

V 0
A −

QA

β2 + β4

)

e−(β2+β4) +
QA

β2 + β4
,

VB(1) =

(

V 0
B −

QB

γ3 + γ4

)

e−(γ3+γ4) +
QB

γ3 + γ4
,

VC(1) =

(

V 0
C −

QC

δ4

)

e−δ4 +
QC

δ4
.
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Combined with equations (22), these volumes become

VO(1) =

(

V 0
O −

QO

δ4

)

e−δ4 +
QO

δ4
,

VA(1) =

(

V 0
A −

QA

δ4

)

e−δ4 +
QA

δ4
,

VB(1) =

(

V 0
B −

QB

δ4

)

e−δ4 +
QB

δ4
,

VC(1) =

(

V 0
C −

QC

δ4

)

e−δ4 +
QC

δ4

and the corresponding blood proportions in the bank may be expressed as

pO =
VO(1)

VO(1) + VA(1) + VB(1) + VC(1)
,

pA =
VA(1)

VO(1) + VA(1) + VB(1) + VC(1)
,

pB =
VB(1)

VO(1) + VA(1) + VB(1) + VC(1)
,

pC =
VC(1)

VO(1) + VA(1) + VB(1) + VC(1)
.

Managing the blood bank efficiently requires getting these proportions at the end of the
day as close as possible to the ideal proportions of the bank. This may be achieved by
minimising the objective function

E = (pO − nO)
2 + (pA − nA)

2 + (pB − nB)
2 + (pC − nC)

2 .

This function only depends on the parameter δ4. Values for the two parameters β2 and
γ3 should also be provided by the optimisation process. Ideally, the values for these two
quantities should be as close as possible to the self replacement values βs

2 and γs4. The
objective function above may then be modified to

E = (pO − nO)
2 + (pA − nA)

2 + (pB − nB)
2 + (pC − nC)

2 +

(

1−
β2

βs
2

)2

+

(

1−
γ3

γs3

)2

.

This function is only a possibility. Numerous other combinations could be considered to
find optimal values for β2, γ3 and δ4. As the expression for E is rather complex, numerical
methods such as the gradient method or any other standard method should be considered
to calculate the minimum. Once the minimum is calculated, values for the parameters
β2, γ3 and δ4 have been determined and all constants may be calculated. Decisions are



Optimal assignment of blood in a blood baning system 69

then available for the blood bank manager. They may be expressed using the following
proportions:

rOA =
DOA

∆A
, rAA =

DAA

∆A
,

rOB =
DOB

∆B
, rBB =

DBB

∆B
,

rOC =
DOC

∆C
, rAC =

DAC

∆C
, rBC =

DBC

∆C
, rCC =

DCC

∆C
,

where rXY represents the percentage rate of blood of type X used to replace blood of type
Y . This number should be given to the bank manager. For example, if rOA = 0.2, 20% of
the blood of type A required should be replaced by blood of type O, which corresponds to
1 in 5 allocations. These values can be calculated at the beginning of every day. If blood
use and supply do not vary significantly for a significant period, these decisions will lead
to the ideal proportion repartitions in the blood bank.

5 Conclusion and future work

The study group developed a model for the management of a blood bank. This model
relates the proportion of each blood group in the population and the blood use and dona-
tions to the stocks available in the blood bank. Using a linear model, blood replacement
coefficients may be defined. Mass balances and long term goals define six relationships
between the nine coefficients. The last three may be estimated with an optimisation pro-
cedure minimising the difference between stocks and ideal situation in the short term and
favouring replacement by blood of the same type. The model provides the proportion of
type X blood that should be replaced with type Y blood and this information could be
given to the manager.

In the future, the model could be further developed.

• The Rhesus factor should be included. This would not affect the complexity of the
model but would significantly increase the number of equations. This would also
make the optimisation process more difficult as there would be more parameters to
optimise on.

• The present study is based on red blood cells only. This should be combined with
other blood products.

• Emergencies should be included in the model. This would involve modifying the
ideal proportions of blood in the bank when in the present situation, these propor-
tions reflect exactly the repartition of blood groups in the population. Including
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emergencies would therefore make the model slightly more complex but the results
presented here would not be significantly affected.

• The model should be modified to include indications about the validity date of the
products. This aspect was not taken into account in the present study but could be
included when choosing the form of the objective function.

• A linear model was chosen for simplicity here. The validity of the model should
be investigated. Other types of relationships between the stocks and the amount of
blood needed should be considered.

• The objective function will have to be studied carefully. Other forms could lead to
more efficient management of existing resources.

• The model will have to be carefully tested using real data.
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